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OPERATING CHARACTERISTICS OF CROSSCORRELATOR 

WITH OR WITHOUT SAMPLE MEAN REMOVAL 

INTRODUCTION 

The detection of weak signals in two channels is often accomplished by 

crosscorrelating the two waveforms and comparing with a threshold. For the 

case where a large number of independent products are added to yield the 

correlator output, the central limit theorem is often employed, with 

questionable validity for low false alarm probabilities, i.e. large thresholds. 

Also, this approximation may not be valid for intermediate numbers of terms 

added. 

Here we wish to get exact operating characteristics for the 

crosscorrelator, namely detection probability vs. false alarm probability, 

even for probabilities as low as 1E-10. In particular, we desire results for 

an arbitrary number of products summed, for any degree of correlation between 

corresponding individual samples of the two channel inputs, and for any input 

signal and noise power levels. 

Furthermore, it sometimes happens that the two input channels contain dc 

components, which can be considered either desirable or otherwise, depending 

on the application. Here we will consider these dc components as nuisance 

terms and will subtract them out prior to crosscorrelation. More precisely, 

since the actual values of the dc components in each channel will generally be 

unknown, we will estimate them via the sample means (over the available record 

lengths) and subtract these estimates from the available data. This 

subtraction feature creates new random variables, all of which are 

statistically dependent on each other, and thereby significantly complicates 

the analysis. Nevertheless, this crosscorrelation of the sample ac components 

of the input channels is encountered in practical situations, and in one recent 

study [1], it was in fact the generalized likelihood ratio detector under two 

different realistic scenarios. Accordingly, it merits study and accurate 

quantitative evaluation of performance capability. 
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More generally, we consider subtraction of scaled versions of the sample 

means of each channel prior to multiplication and summation. Then as special 

cases, we can investigate the crosscorrelator with or without sample mean 

removal, or any intermediate case of interest. 

The major analytical result here is a closed form for the characteristic 

function of the correlator output, in the most compact form involving only two 

rooting operations and one exponential. Although this processor could be 

analyzed by the general method given in [2], in terms of the eigenvalues and 

eigenvectors of a correlation matrix, it would be less accurate and 

considerably more time consuming, even with computer aid, especially for a 

large number of terms summed. The actual numerical procedure adopted here for 

proceeding from the characteristic function to the exceedance distribution 

functions (false alarm and detection probabilities) is that given in [3], and 

utilized to advantage in [2,3,4]. 
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PROBLEM DEFINITION 

INPUT STATISTICS 

The two channel inputs to the crosscorrelator are synchronously sampled 

in time, yielding random variables {u^ J and {vn")J, where N is 

the total number of data samples taken in each channel. These random 

variables are Gaussian with the following statistics: 

means     un = %,  vn = „ 

variances  (%-%) - V ^vn~vn^ = V       r:  i M       I 

all 
ind< 
of n. 

covariances (un-
u
n)(

v
n-

v
n) = "Vv' 

(An overbar denotes a statistical average.) That is, the means and variances 

in each channel, although different, do not change with time, and the degree 

of correlation between channels is constant. Also 

um is statistically independent of un if m^n, 

vm is statistically independent of vn if m^n, (2) 

um is statistically independent of vn if m^n. 

However, un and vp are statistically dependent on each other, for all n, 

to the extent p indicated in (1). 

A SIGNAL AND NOISE MODEL 

To better fix the mathematical definitions above, consider in this 

subsection the following possible signal and noise model: 

un = wu + us(n) + ud(n) 

for 1 < n < N, (3) 

vn = nv 
+ vs<n) + vd(p) 
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where random signal components us(n), v (n) are zero-mean and partially 

correlated with each other: 

Tj^TT = 0, V^HJ = 0, 1 
u2(n) = Su. ^7 = Sv, u$(n) v$(n) = PS(SUSV)

1/2 

for all n. (4) 

Thus Su, S are the powers of the random signal components in each channel. 

Also, the random noise disturbances ud(n), vd(n) in (3) are zero-mean 

and independent of each other: 

ü^T =■ 0, TjW = 0, 

un(n) - D„. v?(n) = Du, uH(n) v,(n) = 0 V vd' 'v» ud' 

for all n.  (5) 

Thus D  D are the powers of the random noise disturbances in each 

channel. Finally, except for the statistical dependencies indicated in (4) 

between u (n) and vs(n), all the 4N random components in (3) are 

independent of each other. 

For this particular signal and noise model in (3)-(5), the master 

parameters in (1) take the special form 

o2 = S +0 , a2 = S +D , pa a = p (S S )1/2 u   u u' v   v v' w  u v  ^sv u v' (6) 

from which there follows 

P = 
,Ru      Rv pslT^Wv 

a/2 
(7) 
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where the signal-to-noise ratios (per sample) of the random components in (3) 

have been defined as 

Su  u2(n)      Sv  vs
2(n) 

u5(n) v» 

for all n. (8) 

Thus the parameters ou, av, p in (1) depend only on the statistics of the 

random components in model (3), and not on the dc components u and y . 

Observe that even if ps=l and Ru=<», p would still be less than 1; the one 

noisy channel prevents full correlation between inputs. 

CROSSCORRELATOR OUTPUT 

We define the sample ac components of each channel of the crosscorrelator 

as 

n   n 

v = v 
n   n 

"i ^-Ur 
m=l 

-I   2 Vr 
m=l 

for 1 < n < N, (9) 

where we have subtracted the corresponding sample means from each and every 

data sample. Thus jul^ and {v^ have zero-means and have statistics 

completely independent of the unknown actual values of input means p  » . 

However, in trade, we now must deal with a new set of 2N random variables, all 

of which are statistically dependent on each other; this is the feature which 

complicates the ensuing analysis. The test statistic (decision variable) of 

interest is the crosscorrelator output after sample mean removal, 

N N N N 

1 =lVn = 2 Vn "¥^ um2 
n=l      n=l       m=l   n=l 

(10) 
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which is independent of the actual unknown values of input means u and p • 

If we knew the input means, we could subtract them directly and not have to 
resort to sample means. 

More generally, we consider the modified channel components 

n  n  N zC 
m=l 

N 

■2* 

(ii) 

vn - vn " N^l "m 
m-1   j 

and the crosscorrelator output 

N       N N    N 

q = 2 Vn = ]>   unvn " N ]>  um ]> vn ' <12) 

n=l      n=l       m=l   n=l 

instead of (9) and (10). Scale factors a and/or ß in (11) may be unequal to 1; 

the final parameter Y in (12) is given by 

Y = a + ß - aß = 1 - (o-D(ß-l). (13) 

The case of Y=0 in (12) obviously corresponds to the case of no sample mean 

removal. On the other hand, if either* a=l or ß=l, then Y=1» and we have 

removal of the sample mean; i.e., (12) reduces to (10). We shall be interested 
here in the analysis of the general case represented by (12), for arbitrary y 

* It is demonstrated in appendix A that if scale factor o=l but ß^l, 

correlator output q is completely independent of u , v  , fj. 
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CHARACTERISTIC FUNCTION OF CROSSCORRELATOR OUTPUT 

DERIVATION 

We express the collection of random variables in (1) and (2) in column 

matrix form according to 

U = [u1 u2 ... uN] ,  V = [Vj v2 ... vN] ,        (14) 

where superscript T denotes transpose. The crosscorrelator output q in (12) 

can then be written as quadratic form 

q = UTQ V , (15) 

where: NxN matrix 

0 = I - Jl 1T , (15) 

I is the NxN identity matrix, and 

i = ei i... nT (i7) 

is a Nxl column matrix of ones. 

Since U and V are Gaussian, their joint probability density function is, 

in terms of the parameters in (1), 

p(U.V) = J2wauov (l-p
2)1 J 

-N 

exp 1   * 

2(1-P
2
) 

*(VU " KUD
T(U - uuD ♦ VV " ^^  " "v1* " ^U " V^V " ^4(18) 

Lau av u v J 

The characteristic function of correlator output q in (15) is then given by 

the statistical average 

7 
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fq(f)  = exp(i?q)  = exp(i?UTQV) = 

=  (Tdll dV p(U,V) exp(i?UTQV) = 

2uouav (l-p2)     J     JjdljdVexp i£l)TQV - -- 

'V0 
a 
u 

2(1-P
Z
) 

a UV 
- uviy.(i9) 

At this point, in order to evaluate this 2N-fold integral, we employ the 

general integral result (B-2) and (B-6) in appendix B, identifying the 
matrices there as 

A = 2  1 2 *' B = 2 1 2 l*    C = i|Q + 
#1-P<) «v(l-p<) a a (l-p ) 

U Vv    ' 

I, 

au— pcru au— po u 
_  VMU   p UMV ,    E _  U V     V

HU , 
2  M 2\ 

2n 2^ auav(l-p ) 
(20) 

We also need the following auxiliary results for special matrix forms; namely, 

for arbitrary scalars c^ c2, the matrix determinant 

det(c1I + c2 1 1T) = cj 1(c1 + Nc2), (21) 

and the matrix inverse 

(ClI+C2llT)_ -^  I - c^c^ Nc2) 
llT- (22) 

Employment of appendix B and (20)-(22) then yields, after a very considerable 

amount of effort, a closed form for the characteristic function in (19) (in 

its most compact form) 
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exp II—L 2 

V*'-- Vr^ rr- 

where 

El = 2pauV  E2 = CTu0v(1"p ] ' 

Fj = E^l-y),  F2 = E2(l-Y)
2 , 

6l - N(l-r)uuuv,  G2 - ^N(l-Y)
2(a2p2 + o2/u  - 2pauWv). (24) 

The square roots in (23) are principal value, being +1 at f«0. This 

characteristic function has four branch points and two essential singularities 

which overlap two of the branch points; the complexity of this characteristic 

function of q precludes tractable analytical results for the probability 

density function or exceedance distribution function of the correlator output, 

except in very special cases. Nevertheless, since the characteristic function 

in (23) is easily numerically evaluated with computer aid, it readily lends 

itself to the procedure presented in [2,3]. A program for the evaluation of 

the cumulative and exceedance distribution functions corresponding to 

characteristic function (23)-(24) is given in appendix C for arbitrary values 

of 

N, number of terms summed 

Y, scale factor in sample mean removal 

uu, mean in u-channel 

wv, mean in v-channel 

<*u, standard deviation in u-channel 

°v, standard deviation in v-channel 
p, correlation coefficient between channels. 
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A sample plot of the cumulative and exceedance distribution functions for a 

typical selection of numerical values for the above parameters is also 

presented in appendix C. 

CUMULANTS OF CORRELATOR OUTPUT 

By taking the natural logarithm of the characteristic function in (23) 

and expanding in a power series in ?, the cumulants of random variable q can 

be extracted: 

^(n) =|(n-l)J[N-l+(l-Y)
n] (ouaw)

n(Sn  + Dn) + 

+ |nlN(l-Y)
n(ouav)

n-1 uuiiv(S
n-1 + D""1) + 

+ |niN(l-Y)
n(auav)

n-2(a^2 + a^KS""1 - D""1 ) , (25) 

where here 

S - p.+ 1,  D - p - 1 . (26) 

In particular, the mean and variance of q are available by using n=l and 2 

respectively in (25): 

wq = (N-v)pauav + N(1-Y)PUUV, 

a2 = (N-2Y
+Y2)d+P2)a^ + N(l-Y)

2(a2u2 + a^2 + 2pauavuuliv).        (27) 

SPECIAL CASE OF y-1, SAMPLE MEAN REMOVAL 

For Y=1S the general characteristic function in (23) reduces to 

fq(?5  Y-1) - 6-ifEj +$2 E2) 

N-l 

(28) 

10 
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where E-, and Eo are still given by (24), and are independent of means uu 

and u  as shown earlier. The cumulants in (25) reduce to 

;Cq(n) =^(n-l)I(N-l)(auav)
n[(p+l)n + (p-l)n] (29) 

and in particular, the mean and variance of q are 

uq = (N-l)pauV 

a2 = (N-l)(l+p2)a2a2 . (30) 

SPECIAL CASE OF Y=0, SAMPLE MEAN NOT REMOVED 

For Y=0, the characteristic function in (23) reduces to 

-N/2 
f  QF;Y=0)  = (l - i|E1 +J2E2)      '" exp 

Gl
(0)  ♦ iSG<o) 

^J r- 1-ijFEj + f\ 
(31) 

where 

El " 2pauV      E2 = Vv(1~p2)' 

r(o)       M r(o)       L,  2 2   ,     2 2      , . 
Gl      = NuuV      G2     = 7*(Vv     Vu " ^VvVv^ (32) 

The cumulants are obtained by setting y=0 in  (25),  and in particular, the mean 

and variance of correlator output q are 

Uq = N(pauav + UuUy), 

-"Ü N|(l+p2)a2a2  +  O2MZ  +  a2y2  +  2p 
'   U   V UMV v^u "u'VuNj' (33) 

11 



TR 7045 

INTERRELATIONSHIP OF TWO SPECIAL CASES 

Let the general characteristic function in (23) be denoted by 

fq(f; N, Y» vu>  uv)« We have already seen the expression for 

fq(f; N, 1, uu, uv) in (28). At the same time, from (23) and (24), there 

follows 

N-l 

fq(|; N-l, 0, 0, 0,) = (l  - 1JEj +?2E2)  ' , (34) 

which is identical to (28). That is, 

fq(J; N, 1, v uv) = fq(?; N-l, 0, 0, 0). (35) 

Thus the characteristic functions of the two following random variables are 

identical: 

(1) Sum of N terms with sample mean removal, and the true means 

arbitrary, 

(2) Sum of N-l terms without sample mean removal, but the true means 

zero. (36) 

The removal of the sample means has eliminated the dependence of the correlator 

output on the unknown means but has reduced the number of degrees of freedom by 1, 

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL 

For general scaling factor Y and arbitrary input means u v      and for 

the model introduced earlier in (3)-(6), the general characteristic function of 

the correlator output is still given by (23), but with the parameters in (24) 

now specialized to the form 

12 
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El - 2<>s(SuV1/2' E2 '  VvWü^Sv^^ 

Fj = EJU-Y),    F2 = E2(l-Y)
2, 

Gl = "(l-r)Vv' G2 " ^-^[(W^VV^^stW1'^ '   <37) 

The general n-th cumulant is still given by (25); however, the use of (6) 

allows for determination in terms of the fundamental quantities of the signal 

and noise model, namely Su, Sy, Du, Dy, PS defined in (4)-(5). In 

particular, the mean and variance of correlator output q are 

uq - (N-r)ps(SuSv)
1/2 ♦ H(1-T)UUV 

a2 -  (N-2YV)CDUD/DUS/DVSU+(1+P2)SUSV]+ 

-N(l-Y)
2[(Su+Du)uv

2
+(Sv+Dv)y

2
+2ps(SuSv)

1/2,uuv].       (38) 

13/14 
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ANALYTIC RESULTS FOR y-1, SAMPLE MEAN REMOVAL 

In this section and the next, we will confine attention solely to the 

case of scale factor y-1. The characteristic function of the crosscorrelator 

output q follows from (28) and (24) as 

N-l N-l 
2 ~ 2 

fq(?) = [1 - i?E1 + ?%]   " = [1 - i52pauav + J
2a^(l-p2)] 

_ übl 
= {[l+iFouav(l-p)] [l-i?auav(l+p)J       for Y-l , (39) 

where we must have N>2. We observe, for later numerical use in appendix D, 

that since |l ± i£b| = (1 +|2b2)^2 is monotonically increasing for J>0, 

then |fq(F)l is monotonically decreasing for all $>0  and any N, au, av, p. 

GENERAL PROBABILITY RESULTS 

The cumulants of q have already been listed in (29) and (30). The 

probability density function corresponding to characteristic function (39) is 

given by [5, 6.699 12] 

Pq(u) . [r(Nz!) ,i/2(1-p2)i/2
Vv] -1 /Jjw - \ 

*K       [ ^—Hexpf pU    9    ) -for all u,    r=l , (40) 
N -lWv(1-p7        \au%(^  \ 

where K^(z) is a modified Bessel function of the second kind [6, section 9.6]. 

If the number of terms added, N, to yield correlator output q, is odd, simple 

relations for the probability density function in (40) can be obtained 

N-3 
[6, 10.2.15 and 10.1.9, last equation]; letting n = —~— for N odd, we find the 

exact result 

15 
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D fui        1-P  ) CXJ    PU -lul   \ ST    2n-m !        /    2 lul    \m 

2au°v4 n:   v°uav(i-p i/a        vvv(i-p y 

for all  u;  n =-^,  N = 3,  5,  7,   ...   . (41) 

For example, for N=3, we have n=0, yielding 

P>>  - pA~exP (   PU "   |U?    1     for all  u. (42) 
' u v V°u°v(1-p  V 

The corresponding cumulative distribution function for N=3 is 

Pq(u) = [dt pq(t) 
=¥eXp(auav(l-p))  

f°r U^°'        (43A) 
-oo 

while the exceedance distribution function is 

+00 

1 - Pq(u) -] dt pq(t) ■i|Pexp^q-(;+p)j  for u>0. (43B) 

This dichotomy, of presenting the cumulative distribution function for 

negative arguments, and the exceedance distribution function for positive 

arguments, turns out to be notationally convenient and physically meaningful 

and will be adopted throughout this report. 

Although closed form expressions for the exceedance distribution function 

corresponding to probability density function (40) are not available for 

general N, the use of [6, 9.7.2] on (40) leads to the dominant term in the 

asymptotic expansion of the exceedance distribution function: 

N-3 

1 - Pn(u) ~  ffirc U*—\ l    exp(  -," \  asu^^.      (44) 

For N=3, this is precise; see (43B). 

16 
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POSSIBLE NORMALIZATIONS OF q 

If we define a normalized random variable 

x -  1/2 =        1/2' (45) 

2   VV(1-P
2
) 

then the characteristic function of x is given by (39) as 

fx(?)  = fq(1/E*/2)  = 
1-T 

l-ifE1/E^/2 + f2 

= ji - iF2p(l-P
2)   +S2J 

N-l 

which has only two fundamental parameters, namely, N and p. 

A second possibility is the random variable defined by 

_g_ 

(46) 

U V 

for which characteristic function 

N-l 

V^)=f
qfe)= f-^p+f

2(l-p2i]   2 (48) 

also depends only on N and p. However, neither of the normalizations, (45) and 

(47), are of interest to us here; an alternative normalization and reasons for 

its selection are given below. 

17 
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SPECIALIZATION TO THE SIGNAL AND NOISE MODEL 

For the model presented earlier in (3)-(8), the original E-,, E? 

parameters in (24) take the form already given in the upper line of (37), 

Let a normalized random variable, relative to the additive random noise 

disturbances, be defined according to 

h = 

(W 1/2 ' 
(49) 

see (5). This normalization for the particular signal model (3) is different 

from both x and y in the general case above. The reason we employ h is that 

the normalization depends only on the power of the additive noise 

disturbances, and not on the signal strengths or correlation coefficients; 

this is consistent with a system which monitors the noise-only background and 

sets a threshold for a desired false alarm probability. 

The characteristic function of the normalized random variable h in (49) 

is given by 

N-l 

,(f)=fq(<p/(W1/2) = 
E E 
1       ?       ? 

<W U Vj 

= [l - i|2a +f(»2-a2)\ 

N-l 
2 

where we define auxiliary parameters here as 

(50) 

a = ps(RuRv)1/2 ■      8 * Ed+R
u)U+R

v)]
1/2 (51) 

Here we used (39), (37), and (8). This characteristic function in (50) 

depends on the four fundamental parameters N, p  R , R , where the 

latter two quantities are the signal-to-noise ratios per sample of the random 

components of model (3); see (8). 

18 
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Reference to (40) reveals that the probability density function of h 

corresponding to characteristic function (50) is given by 

Ph(u) = r^i) ,1/2 (,*,«)!« 
1 N    1 

* Kü.! ftqr) expf&J   fora"u- (52) 

F.or N odd, alternative forms are available from (41), if desired. The 

asymptotic behavior of the exceedance distribution function of h follows in a 

manner similar to that used for (44): 

N-3 

i-pb(u) -xjfeY'™&) a5«-*+~-      ("> 

The cumulants of h follow from (29), (26), and (6)-(8): 

Xh(n) =^(n-l):(N-l)[(a+ß)
n + (a-ß)n] , (54) 

and in particular, the mean and variance of h are 

uh = (N-l)o = (N-1)PS(RURV)
1/2

 , 

a2 = (N-l)(a2+ß2) = (N-l)[l + Ru+ RV+ RuRvd
+Ps)] • (55) 

The two parameters, a and B, are given here by (51), in terms of the 

fundamental quantities R^, R  Pg of the signal and noise model. 

REDUCTION TO IDENTICAL SIGNAL COMPONENTS 

At this point, we will further specialize the results for the signal and 

noise model in the above subsection. We presume that 

19 
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Ru = Rv = R   and  Ps - 1 , (56A) 

giving, from (51), 

a = R, ß = 1+R; (56B) 

that is, the signal-to-noise ratios in the two channels are equal, and the two 

channel signals are fully correlated. This corresponds physically to a case 

where the random signal components in (3) are identical, u (n) = v.(n), 

and the independent random noise disturbances have the same power level. This 

situation will hold for the rest of this section and all of the next section 

where the graphical results are presented. 

Equations (50) and (56B) then yield the characteristic function for 

normalized random variable h in (49) as 

N-l 

2     " 2 

_ N-l 

= C(l + 1?)U - if(l+2R))]~ 2 . (57) 

The cumulants in (54) reduce to 

^(n) =£(n-l)l(N-l)[(l+2R)n+(-l)n] , (58) 

and in particular, the mean and variance become 

un = (N-l)R, ol  = (N-1M1+2R+2R2) . (59) 

All the above statistical descriptions depend only on the two parameters R, 

the per-sample signal-to-noise ratio, and N, the number of terms added to 

yield the correlator output. 
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The probability density function for h follows from (52) as 

ph(u,. [rffi) ,1/2 (W/2J 

and the asymptotic exceedance distribution function from (53): 

1  - Ph(u)  "     ,,^n/N-l\   ferHRT eXPl%)     aSU-H-*. (61) 

An important word of caution must be mentioned at this point: when N is large, 

(61) is inadequate for evaluating small false alarm and detection 

probabilities, since the succeeding terms in the asymptotic expansion 

contribute significantly. For example, when R=0, the maximum value of the 

dominant term (61) occurs when u = (N-3)/2 which, for N=128, yields false 

alarm probability 3.86E-21, a value far below those of interest. Thus (61) 

has limited applicability, being best for small N; in fact, the first 

correction term to (61) yields the multiplicative factor 

,  1+2R (N-3)(N+3+4R) ffi?, 1+m 8D * (62) 

It indicates that, for large N, u must be of the order of N in order for 

the dominant term (61) to be fairly accurate. 

Although for N odd, an alternative closed form to the probability density 

function (60) of h is available from (41), the exceedance distribution function 

will generate a double sum and be rather cumbersome for large N. On the other 

hand, the characteristic function in (57) decays rapidly with f  when N is large 

and yields very nicely to the numerical approach given in [2,3]. The only diffi- 

cult cases are in fact those for small N; accordingly, some analytic results for 

N = 2, 3, 4, 5 will now be presented, based on characteristic function (57). 
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GENERAL DISTRIBUTION INTEGRALS 

Suppose a random variable y has characteristic function fv(f). The 

cumulative distribution function of y can be written as a contour integral 

[3, (5)< (6)] 

1  f   V?> Py{u)=~lk   J dT ^— exp(-iur)  for all u , (63) 

c+ 

where C+ is a contour along the real axis of the complex J?-plane, with an 

upward indentation at the origin f=0, to avoid the pole of the integrand there. 

Similarly, the exceedance distribution function of random variable y can 

be expressed as 

i   r   fv(f) 
1 - Py(u) = -fa   J df -J£— exp(-iuf)  for all u , (64) 

where C_ is a contour along the real f axis, with a downward indentation at 

f=0. 

For u<0, both contours can be closed in the upper-half ?-plane, since the 

exp term furnishes rapid decay there. Similarly, for u>0, both contours can 

be closed in the lower-half f-plane, to realize exponential decay on the 

circular arcs tending to infinity. 

DISTRIBUTIONS FOR N=2 

From (57), the characteristic function of normalized correlator output h 

is 

fh(f) = [(l+if)(l-iS(l+2R))]-1/2 , (65) h 

and the probability density function follows from (60) as 
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Ph(U) = .(1+2R)1/2 K°(^H) GXPfe)   f°r a11 U '   (66) 

There is no closed form for the indefinite integral of a K function; see 
[6, 11.1.8 and 11.1.9]. Instead, we use (65) in (63) and move the contour 

upwards until it wraps around the branch point at J=i and extends vertically 
from there; this is in fact the steepest descent direction for the 

exponential. The contributions of the small and large circular arcs tend to 

zero as the radii tend to zero and infinity, respectively. Under a change of 

variable, there follows the cumulative distribution function in the form 

n  r   \      2 C        dt exp[u(l+t2)]       c n ,c_. Ph(u)=-   » t!L_v ;J       for u < 0 . (67) 

This is a useful exact result for several reasons: the integrand decays 

rapidly, has no cusps, and involves only elementary functions which are easily 

computed; also the integral is a sum of positive quantities and retains 
significance even for large |u). 

In a similar fashion, if characteristic function (65) is substituted in 

(64) and the contour moved down and wrapped around the branch point at 

|= -i/(l+2R) and along the vertical steepest descent direction for the 

exponential, the exceedance distribution function becomes, upon a change of 
variable, 

+ 06 

1 - Ph(u) -f(l+2R) exp§4) f 
dt
?
eXP(-Ut2) —172 for u > 0. (68) 

<J [l+(l+2R)tn[l+(l+2R)(l+t*)l 

This is useful for the same reasons given above. 

There is one closed form result possible; namely, for u=0, direct 

integration of probability density function (66) yields [5, 6.611 9] 

Ph(0) = I arc cos^) , 1-Ph(0) = I arc cos(^) .       (69) 
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DISTRIBUTIONS FOR N=3 

Use of [6, 10.2.17] on (60) immediately yields probability density 

function 

Pn(u) = 

2(T+RTexp(u) 

I+RT exp(l+2Rj 

for u < 0 

for u > 0 

The cumulative and exceedance distribution functions easily follow as 

(70) 

Ph(u) - 2(I+R) exp(u)       for u < 0 , 

X- V") = TCph exP(l4)   for u >0 . 

This latter result corroborates (61) and (62). 

(71) 

DISTRIBUTIONS FOR N=4 

The only closed form result possible is obtained by direct integration of 

probability density function (60) to get origin value 

n ,n,  1 r     /R \  R(1+2R)1/2 
P. 0 = - arc COS^TZD) - "^ 5  
h    , L     U+R/   (i+R)2  _ 

This follows by'use of the integral 

dx e"aX x K, (ex) = g arc C°S.(a/8) - —W 
(ß2-*2) '      e(sZ-a2) 

which follows from [5, 6.611 9] by applying a/ae to both sides, 

(72) 

for 3 > -a ,   (73) 
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DISTRIBUTIONS FOR N=5 

Use of [6, 10.2.17] on (60) immediately yields probability density 
function 

1+2R-(1+R)u exp(u)    foru<Q 

Ph(u) -< 

4(1+R)' 

4(1+R)- j 

The cumulative and exceedance distribution functions follow as 

(74) 

Ph(u) = 
2+3R-(^R)u exp(u)  for u < 0S n     4(1+R):i 

1 - Ph(u) = 
1+2R 

4(1+R) 
3- [(1+2R)(2+R) + (1+R)u] exp/^) for u > 0 .      (75) 

This latter result corroborates (61) and (62). Also, this example was used as 

a check on the numerical procedure [3] applied directly to the characteristic 
function, which is used in the following section; the agreement was ten 

decimals for numerous values of R and u. 
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GRAPHICAL RESULTS FOR Y=l, SAMPLE MEAN REMOVAL 

SUMMARY OF PARTICULAR CASE CONSIDERED 

We first summarize here the particular case that will be considered 

quantitatively in this section. The input samples are 

u
n = uu 

+ us(n) + ud(n) 
for 1 < n < N, (76) 

vn " "v + vs(n) + vd(n> 

where these Gaussian random variables have statistics 

us(n) = vg(n) = ud(n) = vrf(n) = 0 

uf(n) = Su, v|(n) « Sv, us(n)vs(n) = (SuSy)
1/2 , 

ud(n) = Du' vd(n) = V ud(n)vd(n) = ° • (77) 

We presume that the simultaneous signal components u (n), v (n) in the two 
channels are fully correlated, that all other random variables are 

independent, and that the two channel input signal-to-noise ratios 

TT-ir-R (78) 
u   v 

have a common value R. More general situations have been considered in 

earlier sections; however, only this special case will be numerically 
evaluated here. 
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The normalized crosscorrelator output, with sample mean removal (Y=1), is 

N 
h = '-AH 5 "n *n • W 

(D D ) v u vy   n=l 

where the sample ac components 

N 

"n " un " 4 5 um '      *n = vn " l IE vm ' <8°) 
m=l m=l 

The characteristic function of h is given by (57) as 

_ N-l 

fh(?) = C(1
+1J)(1-15(1+2R))] ~T~ (81) 

and depends only on signal-to-noise ratio R and number of terms N. We must 

have N>2. 

If R=0 and we evaluate the exceedance distribution function corresponding 

to (31), we then have the false alarm probability. But when R>0, the 

exceedance distribution function corresponding to (81) is the detection 

probability. In the following, we plot the detection probability vs. the 

false alarm probability, with signal-to-noise ratio R as a parameter; 

different values of N are handled in separate plots. 

OPERATING CHARACTERISTICS FOR Y=l 

A sample program for evaluation of the cumulative and exceedance 

distribution functions corresponding to characteristic function (81), and 

thereby the detection probability vs. false alarm probability operating 

characteristics of the crosscorrelator with sample mean removal, is given in 

appendix D. It is heavily based on the technique developed and explained in 

[3]. 
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In figures 1-14 are presented the operating characteristics for the 

crosscorrelator with sample mean removal, for values of 

N = 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 256,      (82) 

respectively. The case of N=2 was accomplished by use of (67)-(69); results 

for N=3 relied on (71); and the remainder for N>4 employed a numerical 

procedure [3] proceeding directly from characteristic function (81) to the 

exceedance distribution function. False alarm probabilities Pp in the range 

1E-10 to .5 and detection probabilities PQ covering 1E-10 to .999 are 

presented. The abscissa and ordinate on these plots are according to a normal 

probability transformation, as explained below. Values of signal-to-noise 

ratio R are taken as R=2n, where n assumes values appropriate for each plot 

in order to cover the full range of probabilities of interest. 

GAUSSIAN APPROXIMATION 

Suppose the decision variable of a processor is Gaussian with mean and 

standard deviation m0> CTo respectively when the input signal is absent, 

and m^, a^  when signal is present. Then for threshold^., the false alarm 

probability and detection probability are 

+04 
r      i  /u-m 

PF = 

1      / U-in \ 

-A. 0  \  0 

V 
± 

du °1  \°l) "*l al 
(83) 

respectively, where <f>  and $ are the normalized Gaussian probability density 

function and cumulative distribution function: 

u 
*(u) = (2w) 1/2 exp(-u2/2),  |(u) = fdt *(t) .    (84) 

-00 

If we let$ be the inverse function to§, and define 

x -$j(PF), y -lI(PD) • (85) 

*^5ee payt  51 ei se«. " 
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then threshold A can be eliminated from (83) to yield 

m, - rn + a x 
y - -i S 9_ . (86) CTl 

Equation (85) corresponds to the transformation to normal probability 

coordinates; thus a plot of PQ vs Pp on normal probability paper is the 

straight line (86) when the decision variable is Gaussian under both 

hypotheses of signal absent as well as present. 

Reference to (59) reveals that, for our application, 

mQ = 0, Wj = (N-l)R, o2
Q  = N-l, o\  = (N-1M1+2R+2R2) , (87) 

since setting signal-to-noise ratio R=0 corresponds to hypothesis 0, signal 

absent. Substitution in (86) yields 

y ■ <w-1)1/2 V ; (88) 
(1+2R+2R2) 

that is, if normalized crosscorrelator output h were Gaussian, the operating 

characteristics would be straight lines dictated by (88). These straight 

lines are superposed as dashed lines in figures 12-14 for N=96, 128, 256 

respectively. Despite the large value of N=96 in figure 12, the Gaussian 

approximation is not that accurate, especially for small false alarm 

probabilities and large detection probabilities. The exact curve (solid) and 

the Gaussian approximation (dashed) cross each other, and are labelled at the 

crossing with the corresponding value of n in signal-to-noise ratio R=2n. 

For N=256 in figure 14, agreement is better and the Gaussian approximation is 

probably adequate for larger N. If not, an additional term or two in an 

Edgeworth expansion could be investigated with the aid of the cumulants given 

in (58). 
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An obvious shortcoming of the Gaussian approximation (88) may be seen 

immediately: 

lim y = (-,-)    < 1 for any x . (89) 
R-»oo     v « ' 

Reference to (85) then yields the interpretation 

lim PD = £((py)  ) < 1 for any Pp .        (90) 

That is, as input signal-to-noise ratio R tends to infinity, the approximate 

detection probability saturates at a value less than 1, regardless of the 

false alarm probability. Thus the Gaussian approximation must certainly 

deteriorate for large R; the exact discrepancy for probabilities of practical 

interest is displayed in figures 12-14. 
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ANALYTIC RESULTS FOR Y«0, SAMPLE MEAN NOT REMOVED 

In this section and the next, attention will be confined solely to the 

case of scale factor y=0. The characteristic function of the crosscorrelator 

output q is then given in (31) and (32), and the mean and variance of q are 

listed in (33). Due to the complexity of the exponential term in 

characteristic function (31), there are no general probability density 

function or cumulative distribution function results for arbitrary N, like 

those given earlier in (40), (41), and (44) for Y»1. Here, we can have N>1. 

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL 

For the model presented earlier in (3)-(8), the original parameters in 

(24) take the form already given in (37), but now with Y=0. Specifically, 

characteristic function (31) is 

-N/2 
fq(j?) = (l - i?Ex +f2E2)      ' exp 

G|0) + ifoK 

1-lfE,  + f% 
(91) 

where 

Ei = 2ps<suV1/2' E2 ■ wwww1-^ • 

Gl0) = "W G20) ■ 7NC(Su+Du)u2-(Sv+Dv)u2-2ps(SuSv)1/2uuuv].     (92) 

The mean and variance of crosscorrelator output q follow from (38) according to 

"q ■ N[PS(SUSV)1/2 ♦ uuuv] , 

a2 = N[D D +D S +D S +(l+p2)S S    + g ii    w    Mil Hc '     il    w U   V      U   V      V   U    x S'    U   V 

+(S +D )v2+{S  +D )u2+2p (S S )1/2u u ] WU  Uy^V v V  V;^U   Sv U V;    u VJ 
(93) 
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NORMALIZED CROSSCORRELATOR OUTPUT 

As in (49), and for the same reasons, we define a normalized 

crosscorrelator output, relative to the additive random noise disturbances 

ucj(n) and Vj(n) in (3) and (5), according to 

h = 

<W 172 * 
(94) 

The characteristic function of h is available from (91) and (92) 

= [l-i|2a+F2(ß2-a
2)]   exp 

hW = fq(f/( W1/2) = 

-N/2 ^    a+igb 

L  l-i£2a+f2(ß2-a
2)J 

(95) 

where 

a = p (R R )1/2 ,  0 = [(1+RM)(1*RJ]
1/2 . Sv U V 

a . Nr^, b = |N[(1+Ru)r
2 + (1+Rv)r

2 - 2p$(RuRv)
1/2rurv] ,     (96) 

and where we have defined 

S      S        u 
R__ü  R__y.  r JL Ku " D • Kv " D • ru " 1/2 

u 
' rv " nl/2 * (97) 

The characteristic function in (95) depends on six fundamental parameters, 

namely N, os, RU> RV> p  ry. The mean and variance of h follow from 
(94), (93), and (97): 
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"h - NK<W1/2 + Vv^   • 

°l  « N[(l+R )(1+R )+o2R R +(1+R )r2+(l+R )r2+2p (R R )1/2 r r ] .   (98) h      u/v  v' s u v v  u' v v  v' u Msv u v'   u vJ    l ; 

f*u and ry are referred to as normalized means. 

REDUCTION TO IDENTICAL SIGNAL COMPONENTS 

In order to prepare for numerical evaluation of the operating 

Characteristics of the crosscorrelator with y=0, we further specialize the 

signal and noise model to the case where 

Ru . Rv - R, ps - 1, ru , % - r ; (99) 

see (56) et seq. This leads to 

a ■ R, B = 1+R, a = b = Nr2 , 

via (96). The characteristic function in (95) then reduces to 

fh(T) = [d+i?)(l-ir(l+2R))]-N/2 exp 

and the mean and variance in (98) become 

i?Nr2  1 
l-ir(l+2R)J ' (100) 

ph = N(R+r
2),  a2 = N[l+2R+2R2+2(l+2R)r2] . (101) 

The characteristic function in (100) has a branch point atf= i, and another 

branch point at f =  -i/(l+2R) which overlaps an essential singularity; this 

complicates some of the analytical development to follow. 

There are three fundamental parameters in (100), namely N, R, r. Since 

normalized mean r appears only through its square, we can presume r>0 without 

loss of generality. Furthermore, if r=0, characteristic function (100) 
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reduces to (57) if N-l there is replaced by N. Thus the curves for r=0 here 

can be obtained from the earlier curves for y=l  in figures 1-14 by looking at 

a value for N there which is one greater; accordingly we can confine attention 

to r>0 in this and the next section. 

When the random signal components us(n), vs(n) in model (3) are 

absent, then R=0, and the exceedance distribution function corresponding to 

characteristic function (100) becomes the false alarm probability. However, 

(100) still depends on r, meaning that the false alarm probability must, 

likewise. Thus, a non-zero mean in (3), i.e. r>0, is not considered a signal 

attribute here, but rather is a nuisance quantity; it may, in fact, degrade 

the operating characteristics if not removed. 

For notational convenience in the following, we define 

u = 1+2R . (102) 

The magnitude of the exponential term in characteristic function (100) then 

can be expressed as 

exp -t2 a N r2 

1+fu2 (103) 

which is monotonically decreasing for f>0- Coupled with the observation 

immediately under (39), it is seen that |fh(?)| in (100) is monotonically 

decreasing for all J>0 and any N,R,r. This property allows for a convenient 

termination procedure in the numerical transformation [3] of characteristic 

function (100). It should however be observed that (103) does not decrease to 

zero, but saturates at value exp(-Nr$, regardless of how f  increases to 

infinity; thus the eventual decay of the characteristic function (100) is 

furnished only by the leading factor. 
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ASYMPTOTIC BEHAVIOR OF CUMULATIVE AND EXCEEDANCE DISTRIBUTION FUNCTIONS 

In appendix E, it is shown that if characteristic function (100) is 

substituted in (63) and (64), and the contours moved appropriately in the 

complex "£-plane, then the following asymptotic behaviors obtain. The 

cumulative distribution function 

Ph< -)-[p(8 2N/2(1+R)N/2| f H^-pf-dsy 
1 I   l .      N(1+2R) 

u V-      4(1+R) 
Nr 

4(1+R)' 
as u- -<*>. (104) 

We see again, in similar fashion to (61) and (62), that in order for the 

correction term in the second line of (104) not to be too significant, we must 

have u < -N . For reasons elucidated in (61) et seq., (104) is not useful 

for large N. 

As checks on (104), we note that for r=0 and N=2, (104) reduces precisely 

to the upper line of (71); this latter result pertains to y=l, N=3 and is 

consistent with the observation already made in the paragraph below (101). In 

addition, if we let r=0 and N=4 in (104), it reduces to the upper line of 

(75); this latter result holds for y«l, N=5 and is likewise consistent. 

Also given in appendix E are a variety of asymptotic expansions for the 

exceedance distribution function; the simplest one is 

1 - Ph(u) 

N-3 

N-l 
4" 

n-l 

2,1/2 2N/2 (1+R)N/2 faY 

u  exp - 

(1+2R) 

N+l 
T 

r (u112  - N1/2rV] I    F2TT  J as u-* +oe>; r>0 . (105) 
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However, the same reservations as above, regarding u large relative to N , 

are again in order. 

DISTRIBUTIONS FOR N=l 

If characteristic function (100) with N=l is substituted in (63), and if 

the contour is moved as indicated under (66), there follows the exact result 

for the cumulative distribution function 

V«) ■I j    2   
dt    ; m 4,lnI'" ÄÄ 

0
J (W2)(1MW2)) L 1+"d+t ) 

for u<0.     (106) 

(This reduces to (67) for r=0, as it must.) This integral form possesses all 

the desirable attributes listed under (67). 

If characteristic function (100) with N=l is substituted in (64) in an 

attempt to get the exceedance distribution function, the analysis becomes 

rather difficult, due to the overlapping essential singularity and branch 

point of the integrand at ^ = -i/a>. This problem is treated in detail in 

appendix F, with the result that the exceedance distribution function can be 

found via the characteristic function approach in terms of two integrals; see 

(F-21)-(F-23). However, a better numerical procedure for the exceedance 

distribution function is the direct result derived in (F-33); this latter 

integral is the one actually used here to generate the operating 

characteristics for y=0, N=l. 

DISTRIBUTIONS FOR N=2 

The characteristic function is available from (100): 

yi) - (l+irr^u-if-r1 e*pfej = fi(?)*y?).      ao7) 
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where u> = 1+2R. The probability density functions corresponding to these two 

characteristic functions are [5, 6.631 4] 

Px(u) = exp(u) U(-u) , 

P2(u).i«p(-^.0^2U)
1'Z)u(u) 

where U is the unit step function 

(108) 

U(u) = 
0 for  u<0 

1 for  u>0 
(109) 

The probability density function of h is given by convolution 

+04 

p, (u) = j dt p-,(t) Pp(u-t)  for all u (110) 

Substitution of (108) in (110) yields 

itexp(u -T^T)   for u < ° 
Ph(u) = 

1 /       2r 
+r expfu - 

v, 
2r2Nl J       2r fz(l+*)u\l 

W V/2(i+-)1/2' ^J 

W 

(111) 

for u  > 0 

where the Q-function is defined in [7] and the two integrals encountered have 

been evaluated by use of [5, 6.631 4] and [7, (9)], respectively. The 

cumulative and exceedance distribution functions of h readily follow from 

(111), the latter by means of [7, (42)]: 
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ph(u) =I^6XP(U-F!)  forul° ■ 

»- V-) - Qftr • 6s) 
1/21 

1    _„_/.     2r2\ n/        2r /zll+Jui 1/2) for u > 0.   (112) 

(As a check, for r=0, then      (111) and (112) reduce to (70) and (71) 

respectively, as they must.) 

DISTRIBUTIONS FOR N=4 

The characteristic function is available from (100): 

fh(F) - (l+ifr2*(l-i/»r2 expfe^)= f1Cf)*f2C?) .    (113) 

where u = 1+2R. The probability density functions corresponding to these two 

characteristic functions are [5, 6.631 4] 

Px(u) = -u exp(u) U(-u) , 

p2(u) . £ exp(- Hill£) u1'2 I^W«/-) U(u) .       (114) 

The probability density function of h is given by convolution (110). In 

preparation for that result, we use the shorthand notation 

5M(U» - %f (I)1'' • (r)1/   . <115> 
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where the QM-function is defined in [8]. We also present a new integral 
result that will be needed in the sequel, 

j dx x QM(b, ax) =-^[b
2QM+1(b,ac)+2M QM(b5ac)-a

2c2QM_1(b,ac)], (116) 

which can be interpreted as the limit of [8, (31)] as p-*0+. Substitution of 

(114) in (110) yields probability density function 

1 4 expfu - j^-JJ4r
2+2a)(l+u))-(l+a))2u]  for u < 0 

Ph(u) =\ (117) 

-±—j expfu - jJ-)|4r2q3(u)+2a)(l+a))q2(u)-(l+(o)
2uq1(u)J for u > 0 

where (115) has been used; the upper line employed [5, 6.631 4], while the 
lower line used (116) and an integration by parts procedure to be elaborated 

below in the exceedance distribution function evaluation. 

The cumulative distribution function for u </0 follows readily by 
integration of (117): 

Vu) = l    4 exp(u " xyi5r2+(1+(ü)(1+3(,))-(1+a))2u]  for u 1 °-    (118) 
(1+ü))    \    ' 

For u >  0, a modified approach is required. Integration of (110) yields 

cumulative distribution function 

4«* 

P.(u) = fdt p2(t) Px(u-t) . (119) 
Jot, 

Probability density functions p^_ and p2 are available in (114), and 
cumulative distribution function P, follows as 
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Px(u) = 

(l-u)exp(u)  for u <  0 ] 

1   for u > 0 

(120) 

Substitution of (114) and (120) in (119) yields, for u > 0, 

V«>-^i«*^*1''^«"'/-) 
4. «5 

«^-pM- ^-J t1/2 I^rt1'2/«) (1-u+t) exp(u-t) = 

" 1"^2(u) + 2^Fexp(u-^-)  |dt tU2 exp(" ti^Il6rtl/2A)  (1-u+t).    <121) 

via [8, (22)]. We now integrate by parts, letting U(t)=l-u+t, and the 

remainder dV(t). Then using [8, (22)] again, we find 

V(t) = ASexpÜÜMt) 
(1+")' TFsny H2' (122) 

Combining these results, (121) and (116) yield 

= q9( 

1 - Ph(u) - q2(
u) 2 exp(u " TW q2(u) ~  dt q2^t) = 

(1+d))    \     I \j ' v ' u 

u) --^-^exp^u -•Jy[4r2q3(u)+(l+a,)(l+3a,)q2(u)-(l+a))
2uq1(ui] 

for u > 0.    (123) 
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The final results for N=4 are given by (115), (118), and (123). This case was 

used as a numerical check on the computational approach [3] proceeding 

directly from characteristic function (100) to the exceedance distribution 

function, with excellent agreement for numerous values of R, r, and u. 
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GRAPHICAL RESULTS FOR y-0, SAMPLE MEAN NOT REMOVED 

SUMMARY OF PARTICULAR CASE CONSIDERED 

The situation of interest has already been summarized in (76)-(78); in 

addition, we have a common value for the normalized means, 

Uv = r , (124) 
„1/2 " „1/2 
u    v 

and the normalized crosscorrelator output is not (79)-(80), but rather is, for 

Y-O, 

h = L
T72 y  Vn ' (125) 

(D D )lU  ^    n n x u v'   n=l 

The characteristic function is given by (100): 

fh(j?) = [(l+if)(l-ifu))]-
N/2 exp^^J, (126) 

where u = 1+2R. When the signal is absent, then R=0; however the false alarm 

probability corresponding to this characteristic function still depends on r. 

Thus since the sample mean has not been removed, the operating characteristics 

will also depend on r. Since results for r=0 can be found from an earlier 

section, we only consider r>0 here. 

OPERATING CHARACTERISTICS FOR Y=0 

A sample program for evaluation of the cumulative and exceedance 

distribution functions corresponding to characteristic function (126), and 

thereby the detection probability vs. false alarm probability operating 

characteristics of the crosscorrelator without sample mean removal, is given 

in appendix G. In figures 15-35 are presented the operating characteristics 

for values of 
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N = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, (127) 

and for various values of r. The case of N=l was accomplished by use of (106) 

and (F-33); results for N=2 employed (112); and the remainder for N>3 employed 

a numerical procedure [3] proceeding directly from characteristic function 

(126) to the exceedance distribution function. False alarm probabilities Pp 

in the range 1E-10 to .5 and detection probabilities PD covering 1E-10 to 

.999 are presented. The abscissa and ordinate on these plots employ a normal 

probability transformation, as explained earlier in (84)-(86). 

Values of signal-to-noise ratio R are taken as R=2n, where n assumes 

values appropriate for each plot in order to cover the full range of 

probabilities of interest. Values of normalized mean r in (124) have been 

taken as r=l and 2, with the exception of figure 19 where one example for r=4 

was added. 

Without exception, increasing r from zero degrades the operating 

characteristics of the crosscorrelator. For example, figures 17, 18, 19 give 

a succession of operating characteristics for r = 1, 2, 4 respectively, and 

for common values of signal-to-noise ratio R. (in order to determine the 

operating characteristics for r=0 here, we can look at the earlier results in 

figures 1-14, but for a value of N which is one greater there.) Thus, not 

removing the sample mean from the crosscorrelator output requires a larger 

threshold setting for a specified false alarm probability and thereby lowers 

the detection probability and degrades performance. 

GAUSSIAN APPROXIMATION 

If the crosscorrelator output is Gaussian, for both signal absent as well 

as present, the earlier derivations in (83)-(86) pertain. Now reference to 

(101) yields statistics 

mr = Nr , ml =  N(R+r^) 

a2 = N(l+2r2), a2 = N[l+2R+2R2+2(l+2R)r2], (128) 
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since setting signal-to-noise ratio R=0 corresponds to hypothesis 0, signal 

absent. Substitution in (86) yields the normal probability approximation 

1/2 
1 19 9     ' 

y  "I/2 "+(l+?r2)  ^ (129) 

[l+2R+2R2+2(l+2R)r2] 

These straight lines are superposed as dashed lines in figures 32-35 for N=128 

and 256. The Gaussian approximation is moderately good for large N such as 

256, and in fact crosses the exact curves (solid) at a point which is labeled 

with the corresponding value of n in signal-to-noise ratio R=2n. 

An obvious shortcoming of the Gaussian approximation (129) is apparent: 

M1/2 
11m y - (O-J    for any x, r . (130) 

Reference to (85) then yields the interpretation 

lim PD -$/(£;  I < 1  for any Pp, r . (131) 

That is, as input signal-to-noise ratio R tends to infinity, the approximate 

detection probability saturates at a value less than 1, regardless of the 

false alarm probability and normalized mean r. Thus the Gaussian 

approximation must certainly be inaccurate for large R; the exact discrepancy 

for probabilities of practical interest is displayed in figures 32-35. 
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SUMMARY 

A closed form expression for the characteristic function of the output of 

a crosscorrelator, with or without sample mean removal, has been derived in 

(23)-(24) for general values of: the number of terms added to yield the 

correlator output, the means and variances in each of the two input channels, 

the degree of correlation between the two channels, and the scale factor 

employed in the sample mean removal. A program for the evaluation of the 

cumulative and exceedance distribution functions of this general case has also 

been presented. These results can furnish the basis of a study of the error 

probabilities of a correlator required to decide between alternative 

hypotheses on the input statistics [1]; this problem will in fact be the 

subject of a future technical report by this author. 

The general results were first specialized to a signal and noise model, 

and then to the two distinct cases of sample mean removal (Y=1) and no sample 

mean removal (Y=0). Plots of the operating characteristics for numerous 

values of N and signal-to-noise ratio R were then displayed for a wide range 

of detection probability vs false alarm probability. Some new analytic 

results for cumulative and exceedance distribution functions, especially for 

small N, were derived and used as checks on the general numerical procedure. 

Comparisons with a Gaussian approximation indicated quantitatively when that 

simplification is valid. Asymptotic results derived were useful for small N, 

but not for large N except in the region of probabilities too small to be of 

practical importance. 
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Correlator with Sample Mean Removal, N = 24 
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Figure 10. Operating Characteristics for Cross- 
Correlator with Sample Mean Removal, N = 48 
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Figure 14. Operating Characteristics for Cross- 
Correlator with Sample Mean Removal, N " 256 
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Figure    IB.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N-l,    r=2 
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Correlator   without   Sample   Mean   Removal,    N=2,    r=2 
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Figure    19.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N=2,    r=4 
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Figure   20.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N=3,    r=l 
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Figure 22. Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N=4, r=l 
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Figure   23.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N=4,    r-2 
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Figure   24.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N=8,    r=l 
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Figure 25. Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N=8, r=2 
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Figure 26. Operating Characteristics for Cross- 
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Figure 27 .    Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N= 1 6 , r=2 
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Figure E8. Operating Characteristics for Cross- 

Correlator without Sample Mean Removal, N=32, r=l 
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Figure 29. Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N=32 , r=2 
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Figure 31. Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N=G4, r=2 
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Figure 32. Operating Characteristics for Cross- 

Correlator without Sample Mean Removal, N=128, r=l 
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Figure   33.    Operating   Characteristics   for   Cross- 
Correlator   without   Sample   Mean   Removal,    N=128,    r=2 
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Figure 34. Operating Characteristics for Cross- 
Correlator without Sample Mean Removal, N=25B, r=l 
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APPENDIX A. CORRELATOR OUTPUT INDEPENDENCE OF MEANS 

If we let scale factors a=l but ß^l in (11), we still get y=l  from (13). 

•neans that correlator 

To see this directly, let 

This means that correlator output q in (12) is independent of u  u  g 

un " ^u +yn>  
vn " ^v + zn (A-l) 

where means 

y = z = 0 •'n   n (A-2) 

Then (11) yields, with <*«1, 

u = y 
n  •'n -II 'm ' (A-3) 

m=l 

which is obviously independent of the actual value of mean v  . Also, (11) 

yields 

N 

vn = zn - ft 2 *» * Uyd"»)  • (A-4) 

m=l 

which still  depends on uv and ß.    When  (A-4)  is substituted in  (12), we get 

correlator output 

•2% 
n=l 

- ft ]>2m + »v*1^ 
m=l 

(A-5) 

But since 

u_ = 0 
n=l 

(A-6) 

A-l 
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from (A-3), (A-5) reduces to 

N N /     N \ 

n=l n=l V    m=l / 

N N    N 

n=l m=l   n=l 

in terms of the ac components defined in (A-l) and (A-2). Correlator output 

(A-7) is obviously independent of means nu, My and scale factor ß in (11). 

A-2 
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APPENDIX B. A USEFUL INTEGRAL OF EXPONENTIALS OF MATRIX FORMS 

For symmetric KxK matrix M, with det M>0, the following K-fold integral 

is well known (see for example, [9, section 8-3]): 

j dX exp[- £xTMX+NTX] = [^Jf^] .  expU NTM_1N .        (B-l) 

Here X and N are Kxl column matrices. We wish to extend this result to the 

case of double integral 

I = (2ff)"K ( dU dV exp - \ UTAU - | VTBV + UTCV + DTU + ETvJ ,     (B-2) 

where A and B are symmetric without loss of generality, and the integral 

converges; here, matrices A, B, C are KxK while U, V, D, E are Kxl. Notice 

that if we had the apparently more-general term 

UTCjV + VTC2U = UT(C1 + CT
2)V  , (B-3) 

we would simply let C = C^ + z\,  and thereby immediately have form (B-2). 

To accomplish the evaluation of I in (B-2), identify M = B, NT = UTC + ET, 

X = V in (B-l), and thereby evaluate the V-integral in (B-2), with result 

r   -.1/2 

fdV ••• = deTTB   exp|(UTC + ET)B"1(CTU + E)] . (B-4) 

Substituting (B-4) in (B-2), regrouping, and using the symmetry of B (and 

therefore B-*), there follows 

I = i^l r-pr     dU exp[- i UT(A-CB_1CT)U + (DT+ETB_1CT)U + \  ETB_1E .  (B-5) 
(det B)1/2 J     L 2 2     J 

B-l 
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Now reemploying (B-l) with identifications M = A - CB *C , N = D + CB^E, 

X = U, we get a closed form result for (B-5): 

+ T 

= fdet(AB - CB lCTB)j    exp | ETB *E + 

\{ D+CB-1E)T(A-CB"1CT)_1(D+CB"1E)] . (B-6) 

This is the desired general result for integral (B-2). 

As an aside, there is probably a more symmetric closed form result than 

(B-6), since if we represent (B-2) by I(A, B, C, D, E), we quickly see, by 

interchange of dummy variables U and V, that 

I(A, B, C, D, E) = I(B, A, CT, E, D). (B-7) 

However, we have not discovered the symmetric form of (B-6). The present form 

follows as a result of the sequential integration of (B-2), first on V, then 

on U. 

B-2 
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APPENDIX C.  PROGRAM FOR CUMULATIVE AND EXCEEDANCE DISTRIBUTION 

FUNCTIONS VIA CHARACTERISTIC FUNCTION (23)-(24). 

The numerical procedure employed in appendices C, D, and G here is 

heavily based on [3]. The choices of L, A, b in lines 90 to 110 to control 

truncation error and aliasing are also made according to the method of [3]. 

The parameters in (24) are evaluated once in lines 210-260 so as to minimize 

computation time. The FFT subroutine used in lines 1030 et seq is listed in 

[3, pp. B-ll - B-12], and employs a zero-subscripted array. A sample plot of 

the cumulative and exceedance distribution functions follows the program. 

10 ! 
29 
39 
46 
50 
60 
70 
8 0 
90 
1 0 0 
lie 
120 
130 
140 
150 
160 
178 
180 
190 
2 0 0 
210 
220 
230 
240 
250 
260 
270 
2 8 0 
2 9 Ü 
3 0 Ü 
310 
320 
330 
340 
350 
360 
370 
3 S 0 
3 9 0 
4 00 

CROSS-CORRELATOR WITH SAMPLE MEAN REMOVAL; NUSC TR 704^ 
! N u m b e r o f t e r m s 5 u m m e d t o y i e 1 d o u t p u t 
! Scale   factor   in   sample   mean   removal 
! U   channel    mean 
! V   channel    mean 
! U   c h an ne 1    s t an d ar d   de K> i at i o n 
! V   c h anne 1    s t an d ar d   d e u i at i o n 
! C o r r e 1 at i o n   c o e f f i c i e n t 
! Limit    on    integral    of   char,    function 
! S am p 1 i n g   i n c r e m e n t   o n   c h ar .    f u n c t i o n 
! Shift b, as fraction of alias interval 

:ize of FFT 

H = 5 
G am m a=. 5 
Mu»-.4 
Mw*. 3 
S u = . 7 
S '• •' = . 9 
Rho=.6 
L = 60 
Delta».12 
Es=.25*>: 2*PI.-'D« 1 ta! 
Mf = 2"-8 
PRINTER IS 0 
PRINT "L =";L,"Delta -"JDelta,"b =";Bs,"Mf = ";Mf 
RED i M x<: Ü: Mf -1), v ■: 0: Mf -1) 
D i M x c 0:1023:', v < 0:1023) 
S u 2 ■ S u * S u !  C a 1 c u 1 a t e 
S <-.> 2 = SI J * S v !  parameters 
T 1 = 1 -i_i am ma 
T2=T1*T1 
E 1 = 2 * R h o * S u * S',' 
E 2 = S u 2 * S ■,' 2 * (. 1 - R h o * R h o ) 
F1=E1*T1 
F2=E2*T2 
Gl=N*Mu*My*Tl 
G2=.5*N*<Su2*Mv*Mv+Sv2*Mu*Mu-El*Mu*Mw)*T2 
N1 = .5*(N-1 ) 
M u q = G1 + ( N - G a m m a > * R h o * S u * S K> 
M u y = M u q + E s 
X < 0 > = 0 
Y<0>».5*Delta*Muy 
FOR Ns=l TO INTCL/'Del ta> 
Xi=Delta*Ns 
X 2 = X i * X l 
Tl=-Xi*Fl 
T2«1+X2#F2 
CALL Div<-X2*G2,Xi *G1,T2,T1,fl,E 
CALL Log< l+X2*E2, -Xi *E1, C, D;1 

CALL Log':T2, Tl ,E,F) 
CALL Exp <: A-N 1 *C- . 5*E , B-N 1 *D- . 5*F + X i *Es , Fyr , Fy I 

!  M e an o f r an d o m  v ar i ab 1 e q 
!  Mean of shifted variable y 

A r g u m e n t x i o f c h ar . f u n c t i o n 
C a 1 c u 1 at i o n 
of 
c harac t er i st ic 
f u n c t i o n 
f y Cxi ) 

C-l 
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410 Ms=Ns   MOD   Mt 
4 29 K(Ms)=X<Ms>+Fvr/Ns 
430 Y<Ms)=Y<.Ms>+Fy i - Ns 
440 HEXT Ns 
450 CRLL Fft 1Oz ': Mf,X(*),Y C * >) 
460 PLOTTER IS "GRAPHICS" 
470 GRAPHICS 
480 SCALE 0,Mf,-14,0 
490 LINE TYPE 3 
500 GRID Mf/8, 1 
510 PENUP 
520 LINE TYPE 1 
530 B=Bs*Mf*DelU/(2*PI) 
540 MOVE E,0 
550 DRAW B,-14 
560 PENUP 
570 FOR Ks-8 Tu Mf-1 
580 T=Y<Ks)/PI-Ks/Mf 
590 X<Ks)*.5-T 
600 Y<K*)=Pr».5+T 
619 IF Pr>=lE-12 THEN Y=LGT<Pr> 
620 IF Pr<=-1E-12 THEN Y=-24-LGT < -Pr > 
638 IF flBSCPrXiE-12 THEN Y = -12 
640 PLOT Ks,Y 
650 NEXT Ks 
&£.<ä PENUP 
670 PRINT Y<0);Y<l>;Y<Mf-2);YCMf-l) 
680 FOR Ks-0 TO Mf-1 
690 Pr- = X(Ki) 
700 IF Pf>=IE-12 THEN Y*LGT<Pr> 
710 IF Pr<=-1E-12 THEN Y»-24-LGT<-Pr> 
720 IF   AESCPrXlE-12   THEN   Y = -12 
730 PLOT Ks,Y 
740 NEXT Ks 
750 PENUP 
760 PAUSE 
770 DUMP GRAPHICS 
7S0 PRINT LIN<5) 
790 PRINTER IS 16 
800 END 
8 10 ! 
820 SUB Di',HXl, Y1.X2, Y2, A,B> 
830 T=X2*X2+Y2*Y2 
840 A=<X1*X2 + Y1*Y2>-'T 
850 B»<Y1*X2-X1*Y2>/T 
860 SUBEND 
870 ! 
880 SUB LogCX,Y,A,B> 
890 A =.5 * L O G <X *X + Y * Y > 
900 IF XO0 THEN 930 
910 B».5#PI#SGN<Y) 
920 GOTO 950 
930 E = ATrK Y-"X> 
940 IF X<0 THEN B=B+PI*<l-2*<Y<0>) 
950 SUBEND 
960 ! 

Co 11apsi ng 

►ubscript FFT 

0 r i g i n f o r r an d o m r i ab 

Cufflu1 atiwe   probabi1i ty   i n 
E x c e t d an c e   p r o b ab i 1 i t y   i n 

!       PRINCIPAL   LOGC 
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978 
989 
990 
1000 
1010 
1020 
1 0 3 0 

SUE Exp<X,Y.fl,B) 
T=EXPOO 
R=T*COS<:Y) 
B=T*SIN<Y) 
SÜBEND 
! 
SUB Fft 10-<N, X<*>, 

!  EXP< 

! N 10 1824, N=2AINTEGER 0 SUBSCRIPT 
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APPENDIX D. PROGRAM FOR EVALUATION OF OPERATING 

CHARACTERISTICS FOR Y=l 

The comments in appendix C are relevant here also. The characteristic 

function used as the starting point is given by (81). Sampling increment A 

employed on the characteristic function can be coarse for small signal-to-noise 

ratio R, but must be finer for larger R. The quantity DeltaO, A  in line 

30 is that used for R=0; all other A values are sub-multiples, as indicated by 

lines 110-130. A table follows. 

N 4 6 8 12 16 24 32 48 64 96 128 256 

&o .10 .09 .08 .06 .05 .05 .05 .05 .04 .03 .03 .02 

Table D-l. Values of A for y=l 

Let A. denote the sampling increment employed for a particular value of 

signal-to-noise ratio R^>0. The cumulative and exceedance distribution 

function values are available at spacing s = 2W(MfA) in general, where Mf 

is the FFT size. If, for example, Aj . AQ/2, then s]_  = 2sQ, meaning 

that probability values occur twice as coarsely for R, as for R=0. Then in 

order to plot detection probability PQ Vs false alarm probability Pp 

without interpolating points, it is necessary to skip every other PF point 

available, and only plot those Pp, pQ pairs corresponding to the same 

threshold. More generally, if Aj = AQ/K, where K is an integer, then 

sl = ^s0' anc' we p^ot on^ every K-th Point of the available Pp values. 
Here we have chosen K to be a power of 2, for the purpose of ease of plotting. 

We choose bias (shift) b in line 30 in order to give a random variable y 

which is virtually always positive for R=0; see [3]. We then keep b fixed as 

R increases, which makes the probability of y>0 even greater. This feature of 

choosing the same b for all Rj>0 enables an easy comparison of PD and Pp, 

since common threshold values are then conveniently realized. 

D-l 
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It was observed under (39) that the characteristic functions (39) or (81) 

have monotonically decreasing magnitudes for all £>Q. This makes the choice 

of L, the truncation value on the characteristic function integral in (63) or 

(64), rather simple; all we need to do is monitor |fn(f)| of (81) until it 

decreases below a tolerance, here taken as IE—12. There is no trial-and-error 

procedure required as in [3] to guarantee negligible truncation error. 

Subroutines Exp and Log have already been listed in appendix C, and so 

are not relisted here. 

1Ü !  GflMMfi = 1      SAMPLE MEAN REMOVAL 
H, N u HI b e r o f t e r m s 5 u m m e d 
I n i t i a 1 delta 
Bias b 
Size of" FFT 

20 He=8 
30 De1ta8-=.88 
40 Bs = PI • "DIE 1 ta@ 
58 Mf = 2-10 
60 OUTPUT 0;"GAMMA = 1";"    H = ";Nc 
70 OUTPUT 0;"" 
89 DATA -2,-1 ,0, .5, 1, 1 .5,2,2.5,3,3.5,4,5 
90 READ Ns<*) !  SNR R«2An 
108 OUTPUT 0;Ns<*>; 
110 DATA 1,2,2,2,4,4,4,S,S,16,16,32,64 
120 READ Idelta«*) 
130 MAT DeH a=(De11a@)/1de 11a 
140 OUTPUT 0;Delta<*>; 
150 DATA 1E-10, 1E-9, 1E-3, 1E-7, 1 E-6, 1 E-5, 1 E-4, .00 1 , .ü1, . 1, .5, 
160 READ Sc<*) 
170 DIM Ns a : 1 2 ':>, I de 11 a< 0: 12), Del t a< S: 12 >, Sc < 1: 14 ::■ 
180 DIM X<0:8191),Y(0:8191) 
190 FOR 1=1 TO 14 
200 S c <. I ) = F N I r> •• p h i < S c C I ':>) 
210 NEXT I 
220 S=Sc(l> 
230 B«Sc<14) 
240 S c a 1 e = < B - S.-' ■■' < 0 - S :> 
250 XI=30 
260 X2=17ü 
270 Yl=35 
280 Y2=Y1+(X2-X1)*Scale 
290 PLOTTER IS "9872A" 
300 LIMIT X1,X2,V1,Y2 
310 OUTPUT 705;"VS3" 
320 SCALE S,0,S,B 
330 FOR 1=1 TO 14 
340 MOVE S,Sc<I> 
350 DRAW 8,Sc(I) 
360 NEXT I 
370 FOP 1=1 TO 11 
380 MOVE Sc<I),S 
390 DRAW Sc<:i>,E 
480 NEXT I 
410 MOVE S,S 
420 DRAW 0,0 
430 PENUP 
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440 
4 50 
4 6 O 
470 
4 8 O 
4 9 O 
5 0 O 
510 
520 
5 3 O 
540 
550 
560 
570 
5 8 O 
5 9 O 
6 O O 
610 
62Ö 
630 
640 
650 
€.&i) 
670 
6 8 0 
6 '3 O 
700 
710 
720 
730 
740 
750 
760 
770 
7:30 
790 
S 0 0 
810 
82Ö 
830 
8 4 O 
850 
860 
870 
8 8 0 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 

!  8NR R = 2"n 
Delta =";D*1ta<In) 

!  T 9 fi'i p 0 r a r y S t o r a g e f o r 
!  false alarm probability 

Mean of random ar i ab 1e h 
M e an o f sh i f t e d u ar i ab 1 e 

Ml=Mf-l 
M2 = F-1+" 2 
FOR ln=0 TO 12 
IF In-0 THEN 500 
Rc=0 
GOTO 510 
Rc*2"N*<In) 
OUTPUT 0; "R =";Rc, " 
ASSIGN #1 TO "AB3CIS" 
Del ta*Delta(In) 
R2=Rc*2 
R21=R2+1 
N12=<Hc-l).--2 
Mux=<Nc-l)*Rc 
Muy=Mux+Bs 
RED IM K<e:m>, Y<e:Mi) 
MAT X=2ER 
MAT Y = ZER 
X ( 0 ) = 0 
Y<0>=.5*Delta*Muy 
Ls = 0 
Ls=Ls+l 
Xi= Delta*Ls 
CALL Log<1+Xi *Xi*R21,-Xi*R2,fli,Bi > 
CALL Exp<-N12*Ai,Xi *Bs-N12*Bi,Fyr,Fyi ) 
Ms = Ls MOD Mf 
Ar - = Fyr/Ls 
Ai =Fy i "L=. 
X<Ms>"X<Ms>+flr 
Y<Ms >»Y(Ms)+fii 
Mag£q=Ar*Ar+Ai+fli 
IF Magsq>lE-24 THEN 650 
OUTPUT 0;"Xi =";Xi;" .  Mag =";SQRCMagsq) 
CALL Ft T. I3z;, Mf , X(*> , Y<*) ) 
FOR Ms=0 TO Ml 
T»Y<M*> PI-Ms-'Mf 
X i M s ) = . 5 - T !  C u m u 1 at i u e d i s t r i b u t i o n f u n c t I o n 
Y >•' M s ) = . 5 + T !  E x c e e d anc e d i s r. r i b u t I o n f u n c t i o n 
NEXT M« 
OUTPUT o; Y <: o); Y a ); Y c M l -1); Y < M l) 
PLOTTER IS "GRAPHICS" 
GRAPHICS 
SCALE 0,Mf,-14,O 
LINE TYPE 3 
GRID Mf "8, 1 
PENUP 
LINE TYPE 1 
FOR Ms=0 TO Ml 
Pr=YCMs) 
IF Pr)=lE-12 THEN Y=LGTCPr) 
IF PrO-lE-12 THEN Y = -24-LGT < -Pr•) 
IF   RBS<PrXlE-12   THEN   Y=-12 
PLOT   Ms,Y 
NEXT   M* 
PENUP 

A r g u m e n t   x i    o f   c h ar .    f n. 
Cal cu 1 at i on 
of 
c h ar ac t e r i * t i c 
f u n c t i o n 
f y (. x i ) 

D-3 
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3 9 @ 
ö S 6 
0 1 0 
0 2 0 
0 3 0 
040 
0 5 0 
06 0 
070 
0 8 0 
090 
1 0 0 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
3 0 0 
310 
320 
330 
340 
350 
3 6 ü 
370 
380 
3 9 0 
400 
410 
460 
470 
550 
560 
570 
580 
590 
600 
610 
620 
630 
6 4 0 
650 
6 6 0 
670 
680 
6 9 0 
700 

D-4 

i 

FOR Ns=e Tu Ml 
Pr = X'.Ms :■ 
IF P r >= 1 E - l 2 THEN f »L G TiPr) 
IF Pr<=-1E-12 THEN ¥=-24-LGT<-Pr) 
IF RBS<Pr)<lE-12 THEN Y = -12 
PLOT Mi,v 
NEXT Ms 
PENUP 
DUMP GRAPHICS 
OUTPUT 0; " " 
IF ln>0 THEN 12O0 
FOR Ms = M2 TO Ml 
IF Y(Ms><=0 THEN 1130 
NEXT Ms 
M3=Ms-l 
RED IM XvM2:H3:' 
FOR Ms=M2 TO M3 
X(Ms>*FNInvphi<Y<Ms>> 
NEXT Ms 
PRINT #i;x<*) 
GOTO 1380 
RED IM X<M2:M3) 
READ *i,X<*> 
Id=Idelta<In) 
J2 = M2.-Id 
J3=INT(M3-'Id> + l 
FOR J=J2 TO J3 
Y<! J) = FNIn'■>phi < YIJ) 
NEXT J 
PLOTTER IS "9872FT 
LIMIT X1,X2,Y1,Y2 
OUTPUT 705;"'VS3" 
SCALE S,0,S,B 
FOR J = J2 TO J3 
T=J*Id 
IF T>M3 THEN 1370 
PLOT XCT.:',Y<:J> 
NEXT J 
PENUP 
NEXT In 
END 
! 

SUE Exp 
I 

Store false alarm probability 

!  Read i n f a 1 s t a 1 ar rn p r a b ab i 1 i t y 

I, Y , A, £ > 

SUE Log(X,Y,A,E: 

DEF FNInvphi OO      !  INVPHK 
IF (X>0> AND <X<1> THEN 1600 
P = 9.9999 9 9 9 9 9 9 9 E 9 6*(2 * X-1) 
GOTO 1670 
IF X=.5 THEN RETURN 0 
P = X 
IF X>.5 THEN P=.5-(X-.5) 
P = SQR(-2*L0G<P::' J 

T=1+P*C1.432788+P*<.139269+P*.081308)) 
P=P-<2.515517+P*(.802853+P*.010328))-'T 
IF X<.5 THEN P = -P 
RETURN P 
FNEND 

!  EXPCZ) 

!  PRINCIPAL LOG' 

via AMS 5! 2 b ■ 2 , 

SUE Fftl3z(N, N 2-13, H= INTEGER, 0 SUBSCRIPT 
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APPENDIX E. ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS WHEN r>0 

The characteristic function of interest is given by (100) and (102) 

fn(f) - U
+i?r (l-ifUr

wexp[T^r], 

where for notational convenience in this appendix, we let 

(E-l) 

v = If,  n = Nr
2,  u = 1+2R . (E-2) 

The cumulative distribution function is obtained by substitution of (E-l) in 

(63): 

Ph(u) =^  J df f^l+^~V  d-i^)"V exp rfe- iu? (E-3) 

The v-th powers are principal value, being positive real where C+ crosses 

the positive imaginary axis. 

Now let z = 1+iJ in (E-3), yielding 

Ph(u) -r£      J      dZ  (Z-l)-1  Z-V  (l+0,-0,2)-V exp fe-"<*-!)] •   t") 

The contours C+ and C^ in (E-3) and (E-4) are depicted as dashed lines in 

figure E-l. The pole at J=0 is moved to z=l; the remaining singularities are 

branch points (v non-integer); the v-th powers are positive real where C, 

crosses the positive real axis. For u<0, an equivalent contour to Ci is 

that indicated by C2 in figure E-l, since the exponential in (E-4) furnishes 

rapid decay in the left-half z-plane. We write (E-4) in the form 

Ph(u) =T2T^ I dz Z_V exP("uz) 9l(z) • (E-5) 

where 

E-l 
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gl(z)  = (1-z)-1  (iwr exp[fe^] (E-6) 

y.fl a« e 
*fl 

c; 

-i/£o 

K: 

£—- 
i 
_ 

I 1       l+£ 

Figure E-l. Contours of Integration for Cumulative Distribution Function 

In order to get the asymptotic development of (E-5), we expand g,(z) in 

a power series in z, 

where 

gx(z) = g^O) + g|(0) z + ... , 

9i'(0) 

(E-7) 

gl(0) = (l+.rexp(^),^=l+& + --^ (E-8) 

Appeal to [10, p. 96, (4)] then yields (for all v) 

Ph(u) ~ exp( 4^ (0) + (-u) 
v-2 

g-i(o) T(v-iTaivu/J = 

. nv)-1 <i*r (-u)-1 exP[u - ft] [i - ^ ♦ jt ♦ -J^J 

as u-> - oo . (E-9) 

Substitution of (E-2) in (E-9) then yields result (104). 

E-2 
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When (E-l) is substituted into (64) instead, we obtain the exceedance 

distribution function in the form 

1 - Ph(u) = -^   \    df fl  (l+if)-v (l-ir-)~v exp|j^ - iu?J .   (E-10) 

Now let z = - - if, to get 

-1 
1-V«)-TO Idz(z-^   (i^-rv(.zr- lx * /,  , 1  _x-V , _N-V 

exp (E-ll) 

The contours C_ and C3 in (E-10) and (E-ll) are depicted as dashed lines 

in figure E-2. The pole at £=0 is moved to z = 1/u; the remaining 

singularities are branch points. 

H >tl 
(Xne. 

r c 

■K-i/W x/. 

re, 
Z-plane 

A 
t~-T Z^'.^-t * ¥- 

£>   <+£ 

Figure E-2. Contours of Integration for Exceedance Distribution Function 

For u>0, an equivalent contour to C3 is that indicated by C4 in 

figure E-2, since the exponential in (E-ll) furnishes rapid decay in the 

left-half z-plane. We write (E-ll) in the form 

E-3 
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1-Ph(u) = o) (l+a,)-v exp^- üia) -^   J dz z"v expfuz + -|-~L<z) , (E-12) 

where 

hto-w*(i-vs!r (E-13) 

As above, we expand g2(z) in a power series in z, 

g2(z) - 1 + «(l +^) z + . (E-14) 

and substitute it in (E-12); employment of [10, p. 105, (2)] now yields (for 

all v) 

1 - Ph(u) ~u (i+u,rv exp(-J£a) 

(•Cruf-FJ-^Ä'ff? w-2 f-f)] v-2 
as u -> +0°, (E-15) 

where I (z) is the modified Bessel function of the first kind. This is the 

general result for the exceedance distribution function; the various 

parameters given in (E-2) relate it back to the problem of interest in the 

main text. 

As a check on this result, we let r-*-0; then n^O, and (E-15) reduces, 

via [6, 9.6.7], to 

1 - Ph(u) ~ Hv)"
1 a (l+o, 

as u-* +a»; r=0.  (E-16) 

Employing the identifications in (E-2), there follows from (E-16) 

E-4 
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N-2 

1 - ph(u) ~ 2(i+R)r(N/2) (ju+Rj)    exp(rar) * 

„.£., 1+2R (N-2)(N+4+4Rfl       k-   A ..... 1 1+R 8ü  I asu^+#6;r=0» (E-17) 

In order to compare this result with that for Y»1» sample mean removal, we 
must replace N here by N-l; see the paragraph under (101). When this is done, 

(E-17) reverts precisely to (61) and (62). 

Returning to the general result for the exceedance distribution function 

in (E-15), if we keep n>0 and use [6, 9.7.1] for large arguments of I (z), 
there follows the simpler (less accurate) result 

v  1     .1 r      v i 

1 - Ph(u) ~ [2w1/2(l+«)v 7 \ 

.2 " 4 exp - ^-(u1/2 - n1/2)   as u->+». (E-18) 

When (E-2) is substituted in (E-18), the result quoted in (105) follows. 

As a special case of (E-18), if v=l (i.e. N=2), then 

1 " Ph(u) ~  1/2 ~ T74 exP I" h^1'2 ~ *llZ)      as u-*+Q* ; v=1"   (E"19) h    2ir1/2(l+a.)(nu)
1/4   L uV       / J 

E-5/E-6 
Reverse Blank 
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APPENDIX F. EXCEEDANCE DISTRIBUTION FUNCTION FOR Y-0, N-l, r>0 

CHARACTERISTIC FUNCTION APPROACH 

When characteristic function (100) with N=l is substituted in (64), the 

expression for the exceedance distribution function becomes 

1 " ph<u> - ilb ( df f1  (1+i/)"1/2 (l-iJ-)-1/2 exp0^-  iuf], (F-l) 

where a  = 1+2R as in (102). The square roots are taken as +1 at |=0. For 

u^O, the contour C_ can be modified to that indicated in figure F-l, where 

the contributions of the large circular arcs in the lower-half f-plane tend to 

zero. The small circle of radius p centered at branch point f= -i/to must have 

0 < p < l/io, since the latter is the distance to the pole at the origin. 

 ^ 

1 

VaT 

i? 
c 

K 
Figure F-l. Equivalent Contours for (F-l) 

It is easy to show that the two vertical contributions in figure F-l are 

equal. Under the change of variable 

1$- 
l+t£ 

(F-2) 

F-l 
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the sum of the two vertical contributions to exceedance distribution function 
(F-l) becomes 

+<© 
-1 «.>-*£-M   I /   A l/2 

dt (1+t2)   * 

* (1+o.n2)   expZ-V-^J. (F-3) 

This integral remains convergent even as p^0+. Furthermore, the integrand 
decays rapidly, has no cusps, and involves only elementary functions; also the 

integral is a sum of positive quantities and retains significance even for 

large u. 

On the small circular contour C in figure F-l, let 

ij =- - p exp(iö), (F-4) 

to obtain, for the circular contribution to the exceedance distribution 

function, the quantity 

IT 

C(p) = ^n^ exp^^-)p1/2 \ de (l-cupE)"1 * 
2Tr(l+(o)1/2 

-IT 

'(1 - fjj E)"1/2 exp(\ f ♦£* + PUE) , (F-5) 

where we define in this appendix 

x = T = UT2R") ' E = exP(ie) • (F"6) 

F-2 
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The exceedance distribution function is given exactly by the sum of (F-3) 

and (F-5), for any 0 < p < l/a>. It would be advantageous numerically to let 

p-»0+ in these two equations; however, the limit of (F-5) is not obvious and 

can easily be done incorrectly. 

AN ERRONEOUS APPROACH FOR C(p) 

It is tempting to let p-*0+ in those locations in (F-5) where it will "do 

no damage", obtaining for the integral with scale factor p^'^ the quantity 

Ip« P
1/2 \ dö expfl | + j exp(-1»)J . (F-7) 

(The fallacy of doing this for a residue calculation with an essential 

singularity is demonstrated in the next subsection.) Furthermore, the limit 

of (F-7) as p-»0+ can in fact be determined in closed form, as follows. 

Observe that the integrand of (F-7) has a saddle point in the complex ©-plane 

at 

»s - -1L ,  L =Jtn(^) ; (F-8) 

this is in fact the only saddle point in the (-■ir,ir) strip in the ©-plane. Now 

let z = ©-©s, getting for (F-7) 

ir+iL 

\  dz exp i j + j exp(-iz)J Ip = (2x)
1/2   \      r    expj1 5 "* :!- expi-i/)| ,       -"-V; 

-ir+iL 

The radius p now appears only in the limit L of the integral, and the 

integrand has a saddle point at z=0. 

F-3 
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The straight line contour for (F-9) can be deformed into contour C, 

depicted in figure F-2, which goes through the saddle point at z=0. Now if 

-TT+(L TT+tL 

2-pW««, 

Figure F-2. Equivalent Contours for (F-9) 

P-*0+, then L-* + °ö, and (F-9) yields 

r+ioo 

In - (2X )
1/2  \ dz expli | + ^exp(-iz)J , (F-10) 

-ir+i°o 

where the contour is the limit of C in figure F-2 as L-*+«; that is, the 

integral is between the two valleys at ±Tr+ioo and is connected by the saddle 

point at z=0. 

The steepest descent curves out of the saddle point of the integrand of 

(F-10) are given explicitly by 

y = -jtn(^JJL)  for -,, < x < n (F-ll) 

Thus if we let 

F-4 
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. * ,sin xx z=x+iy=x-i Xn(—-—) , 

dz  1 _ . (cos x  I. (F_12) 
dx  x  n lsin x  x; ' ir x*; 

on the steepest descent curves in (F-10), there follows 

I0 - (2X)
1'2 4 -1 m** i)«»|! ? + W1^) »inhr-pH - 

/0,Al/2   THV/I      -,-  cos x   .,  l\  /sin x\         T* cos x~] = (2x) V  dx^l - i iTfnr + i -J ^-J       exPJjWirJ 

-IT 

. (2x)l/2 2jdx  (si^_xy/2 exp(|_c^  . (2x)l/2 2(2if)l/2 = 4(xw)l/2  ,    (F_13) 

0 

(The integral value of (21T)
1
'
2
 in (F-13) was deduced by numerical integration.) 

Recalling the definition of I in (F-7), we then have the dubious 

result for the limit of (F-5): 

c<0>7*(7)1,2^T7I«pfra)- <M4> 

where we employed (102) and (F-6). Actual numerical evaluation of (F-14), 

combined with V(0) from (F-3), gives incorrect results for the exceedance 

distribution function (F-l); thus the replacement of p with 0 in (F-5) is 

invalid. The explanation for this pitfall is the essential singularity of 

(F-l) at f = -i/u; a simpler illustration follows. 

F-5 
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RESIDUE OF ESSENTIAL SINGULARITY 

The function 

exp(I) = l +i + J—-+ ... (F-15) 
L L      21  zc 

has an essential singularity at z=0, with residue 1, as exemplified by this 

Laurent expansion. Now consider the function 

f(z) = exp(i) g(z) , (F-16) 

where g(z) is analytic at z=0. Then 

f(z) - (l +1 + —^+ ... Vg(0) + g(1)(0) z +-^(2)(0) z2 + ...J   .  (F-17) 

The coefficient of 1/z in (F-17) is the residue of f(z) at z=0; namely 

+öö 

Res . 9(0) * £ ,«»(0) * yy g(2)(0) * .... ^ ^jy . (MS) n 
n=0 

Thus the residue of f(z) at z=0 depends on the behavior of g(z) in a 

neighborhood of z=0, and not just the value g(0). 

A couple of examples yield the following: 

g(z) ^(1-az)"1 ,  Res =^4^; 

P        I,(2a) 
g(z) = exp(a^z) ,  Res = -±-—  . (F-19) 

F-6 
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CORRECT APPROACH FOR C(p) 

Reconsider the integral in (F-5) plus the scale factor p1'2; making the 

substitution z = e+iL, where L is given in (F-8), there follows for this quantity 

dz (l-2o,x e12)"1 (1 - ||i eiz)  " * 

-ir+iL 

* exp[i | + \ e"lz + 2xu elz] . (F-20) 

The uppermost singularity of the integrand in the z-plane (within the -IT, IT 

strip) is a pole at z = i Jn(2(dX); however, the straight line contour in 

(F-20) remains above this pole because p < 1/w; see (F-8). Furthermore, the 

total integrand of (F-20) has a saddle point on the imaginary axis of the 

z-plane above the pole location z  because the integrand is infinite at the 

pole and at z = 0 +i<*>. Thus the straight line contour in (F-20) can be 

modified so as to pass through the saddle point, and yet remain above z 

Finally, letting p-*0+, then L-»+<», and (F-20) combined with (F-5) yields the 

exact result for the circular component 

c(0) *, ?n \^m <*\ ^J J dz f1-2- e12'"1 * 
-TT+ i« 

exp F I + 7 e_iZ + 2xu eiJ '        (F_21) 

where the two valleys of the integrand at ±ir+i<x> are joined with a contour 

through the saddle point lying above the pole at z = i Jün(2ü)X). Here 

to = 1+2R. 

F-7 
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The other component of the exceedance distribution function, 

corresponding to (F-21), is given by (F-3) at p ■ 0+: 

+00 

v(o) = LULH exp (- ^-)   fdt (in2)"1 * -)I 0 

*(l+u.n2) exp{-±t2-^). (F-22) 

Thus for u _> 0, (F-l) and figure F-l yield exceedance distribution function 

1 - Ph(u) = C(0) + V(0) = (F-21) + (F-22) . (F-23) 

Computationally, (F-21) is not too attractive, because of the complex 

integrand and/or the need to determine the steepest descent paths to ±ir+i<*> 

numerically. Accordingly, an alternative direct procedure for determining the 

exceedance distribution function of random variable h is now presented. 

DIRECT EVALUATION OF EXCEEDANCE DISTRIBUTION FUNCTION 

For Y=0, N=l, (12) and (3) yield the crosscorrelator output for the 

signal and noise model as 

q = ulVl = [uu ♦ us(l) + ud(l)] [My + vs(l) + vd(l)]..    (F-24) 

The normalized crosscorrelator output is then, from (49) and (97), 

h " 7HrT72 " (ru + us + ud)  <rv + vs + vd) *  x* .    (p-25) 
* U V 

where x and y are joint Gaussian random variables with statistics 

F-8 
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x = r    ,     y = r    , u '     J       v ' 

ax " l + V ay " x + V (x-x)(y-y) = ps(RuRv
)1/2 •   <F"26) 

We now make the same assumptions as in (99); see also (56) et seq. Then 
(F-26) specializes to 

x=y=r, CT2 = 02 = i + R, 0\    P)(y = ^ . (F-27) 

The joint probability density function of x, y is then given by 

p2(*,y) = pKf] 
-i 

exp 
(x-r)2 + (y-r)2 - 2o    (x-r)(y-r) 
 2JL  

2a2(l  -  px
2) 

(F-28) 

We now have cumulative distribution function 

Ph(u) =11    dx dy p2(x,y)      for u < 0 , 

VR4 

and exceedance distribution function 

1 - Ph(u) =  I 1  dx dy p2(x,y)  for u > 0 , 

Rl+R3 

where regions Rj, R2, R3, R4 are indicated in figure F-3. 

(F-29) 

(F-30) 

F-9 
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XU="£0 

\ 

Figure F-3. Regions of Integration 

If we now rotate axes according to 

s = 
x+y t = x-y (F-31) 

and employ (84) and (F-27), there follows (after scale changes of the 

variables) 

+*» 

Ph(u) = 2 |dv tf(v - r(2/ü))1/2)$(-(ü,v2-2u)1/2)  for u < 0 ,     (F-32) 

and 

1 - Ph(, ">4"4<^W"#forui (F-33) 

Here m =  1+2R. These real integrals are very useful for the evaluation of the 

distributions of h when Y=0, N-l. In fact, (F-33) is preferred over 

(F-21)-(F-23); but (106) is preferred over (F-32) since $ need not be 

evaluated in (106). This is in fact the procedure utilized here to obtain 

numerical results for this case of y=0» N=l. 

F-10 
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APPENDIX G. PROGRAM FOR EVALUATION OF OPERATING CHARACTERISTICS FOR Y=0 

The comments in appendices C and D are relevant here also. The 

characteristic function used as the starting point is given by (100). It was 

observed under (103) that |fh(f)| for (100) is monotonically decreasing for 

all $> 0; thus the choice of truncation value L is simplified; see appendix D 

comments. A table for sampling increment A (when R=0) follows. 

N A for r=l A„ for r=2 
o 

3 

4 

8 

16 

32 

64 

128 

256 

.07 

.07 

.05 

o04 

.03 

.025 

.020 

.012 

.05 

.05 

.03 

.02 

.02 

.015 

.010 

.007 

Table G-l. Values of A for Y=0 

10 ! 
28 
30 
49 
50 
60 
70 
30 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 

GAMMA = 0 
Nc=32 
Rs=l 
Del ta0=.03 
B*=2*P I /De 1 t a@* . 375 
Mf=2-ie 
OUTPUT 0;"GAMMA = 0 

HO SAMPLE MEAN REMOVAL 
N , N u m b * r o f X e r m ■=■   a d d e d 
r, Horm a1ized m e an 
Initial delta 
Bias b (. d e p e n d s o n r ) 
Size of FFT 

N =";Nc; "   >-  =";Rs 
OUTPUT 0;"" 
DATA -4,-3,-2.5,-2,-1.5,-1,-.5,0, .5, 1, 1.5,2 
RERD Ns<*> !  SNR R = 2--n 
OUTPUT 0;Ns<*>; 
DflTR 1,2,2,2,2,2,2,2,2,4,4,4,8 
READ Idelta(*:> 
MRT Del t a= ( D e 1 t a@ ) •" I de 11 a 
OUTPUT 0;Delta':*>; 
DflTR IE-10,1E-9,1E-8,1E-7,1E-6,1E-5, 1E-4,.001, .01 , . 1 , . 5, . 9, 
READ Set*) 
DIM Ms (1: 12 ':>, I de 11 a( 0: 12 ':>, De 11 at: 0: 12), Sc < i: 1 4 ) 
DIM X i a: 3 1 9 1 > , Y ( 0 : 8 1 9 1 ;■ 
FOR 1=1 TO 14 
S c < I !> = F NI n \> p h i ( S c (. I > ) 
NEXT I 

G-l 
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2 3 8 
246 
256 
26Ö 
278 
286 
290 
300 
310 
328 
338 
340 
358 
368 
370 
380 
3 9 0 
4 0 0 
418 
428 
430 
448 
450 
468 
470 
488 
490 
580 
510 
520 
530 
540 
550 
56ü 
570 
580 
590 
6 8 8 
610 
620 
630 
640 
650 
66ä 
678 
680 
69Ö 
780 
710 
728 
738 
748 
750 
760 
770 
780 
798 
8 8 8 

G-2 

S = S c (. 1 :> 
E = Sc<14) 
Seale=(E-S)/(0-S> 
XI =38 
X2=170 
Yl=35 
Y 2=Y1 + i X 2 - X1 > # S c a 1 e 
LÜTTER IS "9872R" 
IMIT X1,X2,Y1,Y2 
UTPUT 705;"VS3" 
RLE S,0,S,E 

OR 1=1 TO 14 
ovE s.sccn 
RRW 8,Sc(I> 
EXT I 
OR 1=1 TO 11 
OVE Sc<I),S 
RRW SccI),B 
EXT I 
OVE S,S 
RRW 8,0 
ENUP 
l=Mf-l 
2«NC2 
sn=Nc*Rs*Rs !  N r- 
OR In=8 TO 12 
F ln>0 THEN 520 
c=0 
OTO 538 

•"•NsUrO 
UTPUT  o;"R  =";Rc," 
SSIGN #1 TO "RBSCIS 
e1ta=Helta<In) 

Rc *2 
:l=R2+i 
u x = N c * R c + R s n 
u y = f'1 u x + E s 
EDIM X(0:r'il >, Y(0:MI :> 
RT X=ZER 
RT Y=ZER 
< 0 ) = 0 
(0)«.5#Delta*Muy 
S = 0 
s=Ls+l 
i = D e1t a* L s i  firgum8n t x i 
i=Xi *R21 
ALL Lo"g<1+Xi *Ei,-Xi *R2,fli,Bi ) 
RLL Di >■.> (. 0, X i *Rsn, 1 , -E i , C i , D i ) 
ALL Exp < Ci-N2*fi i,D i +X i *Bs-N2*E i,Fyr,Fy i) 
s = Ls MOD Mf 
r = F y r •■■■' L s 
l =F;:,'i.-"Ls 
<Ms)=X<Ms)+fir 
<Ms)»Y<Ms>+fii 
agsq=Rr*flr+fli *fii 
F Magsq>lE-24 THEN 660 
UTPUT y;"Xi =";Xi;"    Mag =";SQR<Magsq> 
RLL Ff t 1 3z < Mf , X < * > , Y C * :> :> 

!  SNR R = 2- r-i 
Delta =";Delta<In) 

!  Temporary storage 
!  for false alarm probability 

M e a n o f r a n d o m 
Mean of sh i ft ed war i 

ab 1: 
abl 

: h ar. 
Cal c 
of 
c h ar 
f u n c 
fy(.x 

f n. 
u 1 at i 

act er 
t i on 
i ) 

litK 
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810 FOR Ms=0 TO Ml 
820 T=Y<Ms>/PI-Ms-'Mf 
830 X<Ms>=.5-T 
840 Y<Ms>=.5+T 
350 HEXT Ms 
860 OUTPUT ö; v(0>: Y< l :>; vcMi-i >; YCMI > 
870 PLOTTER IS "GRAPHICS" 
880 GRAPHICS 
898 SCALE 9,Mf,-14,0 
990 LINE TYPE 3 
910 GRID Mf/8,1 
929 PENUP 
930 LINE TYPE 1 
940 FOR Ms = 0 TO Ml 
950 Pr=Y<Ms) 
960 IF Pr>=lE-12 THEN Y=LGT<Pr> 
970 IF Pr<=-1E-12 THEN Y=-24-LGTC-Pr;■ 
980 IF flBS<Pr><lE-12 THEN Y=-12 
990 PLOT MsfY 
1Ö00 NEXT M* 
1010 PENUP 
1020 FOR M*«0 TO Ml 
1630 Pr»X<Ms) 
1040 IF Pr>=lE-12 THEN Y=LGT(Pr> 
1050 IF Pr-<=-lE-12 THEN Y=-24-LGT < -Pr :> 
1060 IF AES<Pr X IE-12 THEN Y = -12 
1070 PLOT Ns,Y 
1080 NEXT Ms 
1090 PENUP 
1100 DUMP GRAPHICS 
1110 OUTPUT 0; "" 
1120 IF In>8 THEN 1270 
1130 FOR Ms = 0 TO Ml 
1140 IF   Y<MsX.7   THEN   1160 
1150 NEXT Ms 
1160 M2=Ms-l 
1170 FOR M*»M2 TO Ml 
1180 IF   Y<MsX=0   THEN   1200 
1190 NEXT Ms 
1200 M3=Ms-l 
1210 RED IM X'::M2:M3> 
1220 FOR Ms = M2 TO M3 
1230 X<M*>«FNIr>yphi(YCMs> ) 
1240 NEXT Ms 
1250 PRINT #l;XC*> ! 
1260 GOTO 1460 
1270 RED IM X<M2:M3> 
1280 READ #i;x<:*:> ! 
1290 Id=Idelta(In) 
1300 J2=INTCM2.- Id) 
1310 J3*INT<M3/Id>+1 
1320 FOR J = J2 TO J3 
1330 Y<J)=FNIr»vphi <Y<J) > 
1340 NEXT J 

C um u 1 at i '■■' e   d i s t r i b u t i o n   f u n c t i o n 
Exceedance   d i st ri bution   f unct i on 

S t o r e   f a 1 s e   a 1 ar ID   p r o b ab i 1 it y 

Read   in   false   alarm   probability 

G-3 
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1358 FLUTTER IS :' 3872R" 
1360 LIMIT Xl,X2,Yl, Y2 
1370 OUTPUT 705;"VS3" 
1380 SCALE S,0,S,B 
1390 FOR J = J2 TO J3 
1400 T=J*Id 
1410 IF T<M2 THEN 1440 
1420 IF T>M3 THEN 1450 
1430 PLOT X<T>, Y<j::' 
1440 NEXT J 
1450 PENUP 
1460 NEXT In 
1470 END 
14S0 ! 
1490 SUE Hi MC XI,Yl,X2,Y2,A,B > 
1540 ! 
1550 SUB ExpOX, Y,fi, B> 
1 6 Ö Ö ! 
1610 SUE LogCX,Y,A,B> 
1690 ! 
1700 DEF FNInyphi CX) 
1830 ! 
1840 SUB Fftl3z<N,X<*),Y<*)) 

D i v <: z > 

EXP(Z> 

PRINCIPAL LOGCZ::' 

INVPHKX) yia AMS 55, 26.2.23 

N <= 2:-13, N = 2-- INTEGER, 0 SUBSCRIPT 

i 

i 

G-4 
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